TensorFlow Binary Classification with examples in Python

Hello programmers, in this tutorial, we will learn Binary Classification using TensorFlow with examples.

All the codes are done in a collab notebook

We have a dataset of cats vs. dogs for today’s binary classification.

Download and Prepare the DataSet

# Download the dataset of cats vs dogs
!wget https://storage.googleapis.com/tensorflow-1-public/course2/cats_and_dogs_filtered.zip
  • Now we have to extract the dataset from that zip file, and then we have to assign the directory of each training and validation set
import os
import zipfile

# Extract the archive
zip_ref = zipfile.ZipFile("./cats_and_dogs_filtered.zip", 'r')
zip_ref.extractall("tmp/")
zip_ref.close()


# Assign training and validation set directories
base_dir = 'tmp/cats_and_dogs_filtered'
train_dir = os.path.join(base_dir, 'train')
validation_dir = os.path.join(base_dir, 'validation')

# Directory with training cat pictures
train_cats_dir = os.path.join(train_dir, 'cats')

# Directory with training dog pictures
train_dogs_dir = os.path.join(train_dir, 'dogs')

# Directory with validation cat pictures
validation_cats_dir = os.path.join(validation_dir, 'cats')

# Directory with validation dog pictures
validation_dogs_dir = os.path.join(validation_dir, 'dogs')

Build the model

For building the model, we will create four convolution layers alternate with the MaxPolling layer, and we are using the “relu” activation function.

import tensorflow as tf
from tensorflow.keras.optimizers import RMSprop

model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(32, (3,3), activation='relu', input_shape=(150, 150, 3)),
    tf.keras.layers.MaxPooling2D(2, 2),
    tf.keras.layers.Conv2D(64, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Conv2D(128, (3,3), activation='relu'),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid')
])


Here is the part we have to learn how to classify binary classes.

  1. We use “loss=’binary_crossentropy'” for binary classes while compiling our model.
  2. Also, in ImageDataGenerator, while giving the directory to train_generator and Validation_generator, we have to pass class_mode, so for binary classification, we set class_mode=”binary”

Let’s see this in code

  1. Compiling the model
model.compile(loss='binary_crossentropy',
              optimizer=RMSprop(learning_rate=1e-4),
              metrics=['accuracy'])

2.ImageDataGenerator

from tensorflow.keras.preprocessing.image import ImageDataGenerator

# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)

# Flow training images using train_datagen generator
train_generator = train_datagen.flow_from_directory(
        train_dir,  directory for training images
        target_size=(150, 150),
        batch_size=20,
        # Since we use binary_crossentropy loss, we need binary labels
        class_mode='binary')

# Flow validation images using test_datagen generator
validation_generator = test_datagen.flow_from_directory(
        validation_dir,
        target_size=(150, 150),
        batch_size=20,
        class_mode='binary')

Train the model

# Create a new model
model = create_model()

# Train the model
history = model.fit(
      train_generator,
      steps_per_epoch=100,  # 2000 images = batch_size * steps
      epochs=20,
      validation_data=validation_generator,
      validation_steps=50,  # 1000 images = batch_size * steps
      verbose=1)
output:Epoch 1/20 100/100 [==============================] - 10s 94ms/step - loss: 0.6863 - accuracy: 0.5425 - val_loss: 0.6602 - val_accuracy: 0.5980 
Epoch 2/20 100/100 [==============================] - 9s 94ms/step - loss: 0.6453 - accuracy: 0.6165 - val_loss: 0.6262 - val_accuracy: 0.6600 
Epoch 3/20 100/100 [==============================] - 9s 92ms/step - loss: 0.5948 - accuracy: 0.6780 - val_loss: 0.5953 - val_accuracy: 0.6760 
Epoch 4/20 100/100 [==============================] - 9s 93ms/step - loss: 0.5650 - accuracy: 0.7015 - val_loss: 0.5796 - val_accuracy: 0.6780 
Epoch 5/20 100/100 [==============================] - 9s 93ms/step - loss: 0.5440 - accuracy: 0.7095 - val_loss: 0.5820 - val_accuracy: 0.6920 
Epoch 6/20 100/100 [==============================] - 9s 93ms/step - loss: 0.5139 - accuracy: 0.7405 - val_loss: 0.6229 - val_accuracy: 0.6490 
Epoch 7/20 100/100 [==============================] - 9s 92ms/step - loss: 0.4900 - accuracy: 0.7640 - val_loss: 0.5664 - val_accuracy: 0.7160 
Epoch 8/20 100/100 [==============================] - 10s 101ms/step - loss: 0.4683 - accuracy: 0.7770 - val_loss: 0.6086 - val_accuracy: 0.6930 
Epoch 9/20 100/100 [==============================] - 9s 93ms/step - loss: 0.4481 - accuracy: 0.7775 - val_loss: 0.5889 - val_accuracy: 0.7120 
Epoch 10/20 100/100 [==============================] - 9s 94ms/step - loss: 0.4196 - accuracy: 0.7980 - val_loss: 0.6005 - val_accuracy: 0.6980 
Epoch 11/20 100/100 [==============================] - 9s 94ms/step - loss: 0.3971 - accuracy: 0.8230 - val_loss: 0.5423 - val_accuracy: 0.7310 
Epoch 12/20 100/100 [==============================] - 9s 94ms/step - loss: 0.3656 - accuracy: 0.8390 - val_loss: 0.6199 - val_accuracy: 0.6930 
Epoch 13/20 100/100 [==============================] - 9s 94ms/step - loss: 0.3482 - accuracy: 0.8485 - val_loss: 0.5643 - val_accuracy: 0.7330 
Epoch 14/20 100/100 [==============================] - 9s 91ms/step - loss: 0.3209 - accuracy: 0.8640 - val_loss: 0.5616 - val_accuracy: 0.7450 
Epoch 15/20 100/100 [==============================] - 9s 91ms/step - loss: 0.2987 - accuracy: 0.8750 - val_loss: 0.5337 - val_accuracy: 0.7430 
Epoch 16/20 100/100 [==============================] - 9s 90ms/step - loss: 0.2745 - accuracy: 0.8940 - val_loss: 0.5738 - val_accuracy: 0.7470 
Epoch 17/20 100/100 [==============================] - 9s 91ms/step - loss: 0.2504 - accuracy: 0.8940 - val_loss: 0.7697 - val_accuracy: 0.6950 
Epoch 18/20 100/100 [==============================] - 9s 91ms/step - loss: 0.2324 - accuracy: 0.9120 - val_loss: 0.5576 - val_accuracy: 0.7570 
Epoch 19/20 100/100 [==============================] - 9s 92ms/step - loss: 0.2137 - accuracy: 0.9155 - val_loss: 0.6398 - val_accuracy: 0.7400 
Epoch 20/20 100/100 [==============================] - 9s 91ms/step - loss: 0.1903 - accuracy: 0.9275 - val_loss: 0.5814 - val_accuracy: 0.7350

 

So here we classify our dataset using binary classification, and we saw that our model accuracy is very bad, so for this, you may have to use Data Augmentation. After this, you will get good accuracy.

Hopefully, you have learned Binary Classification using TensorFlow.

 

Leave a Reply

Your email address will not be published.